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Abstract
Using a spin-1/2 description of valence holes and Kondo coupling between
local spins and carriers, GaAs-based III–V diluted magnetic semiconductors
(DMS) are studied in the coherent potential approximation (CPA). Our
calculated relation between ground-state energy and impurity magnetization
shows that ferromagnetism is always favourable at low temperatures. For very
weak Kondo coupling, the density of states (DOS) of the host semiconductor
is not modified much. Impurity bands can be generated at the bottom of the
host band only when Kondo coupling is strong enough. Using Weiss molecular
theory, we predict a linear relation of Curie temperature with respect to Kondo
coupling and doping concentration x if the hole density is proportional to x .

(Some figures in this article are in colour only in the electronic version)

The ferromagnetism of III–V-type diluted magnetic semiconductors (DMS) is not well
understood. To explain ferromagnetism in DMS, various models and approaches have been
proposed [1–6]. Though the models differ from each other in detail, they all agree that the
coupling between the carriers and local spins is of fundamental importance. An issue of debate,
however, is how the exchange between localized spins is induced by the carriers. One model
for this induced exchange is the Ruderman–Kitttel–Kasuya–Yosida (RKKY) interaction [1, 2].
Another version which results in conclusions equivalent to RKKY is the Zener model [4] which
uses the fact that the valence holes are on p-orbitals. A third model is the double-exchange
(DE) mechanism [7], but this model is inconsistent with the charge-transfer properties [4].
Though RKKY can give a Curie temperature in agreement with experiment, some argue that
the RKKY model breaks down here [5, 8] because the local coupling between the carrier and
the impurity spin is much larger than the Fermi energy and cannot be treated perturbatively.
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In dealing with the effect of the localized spins, a key issue is whether or not randomness
should be taken into consideration. The above models are all mean field approximations (MFA)
which assume homogeneity and neglect randomness. But DMSs are disordered systems with
positional disorder of Mn impurities. As concluded in [2, 9], disorder has a substantial influence
upon the magnetic susceptibility of carriers. Hence, any first principle consideration should take
into account the randomness of the impurities.

A classic method of dealing with randomness is the coherent potential approximation
(CPA) [10] which has been applied to DMS [11–13]. Based on the formalism of [14] and
assuming a very large local spin S while keeping the product I S constant (where I is the
Kondo-like interaction), [11] obtained the density of states and the relation between Curie
temperature and the doping concentration. Using the averaged carrier Green’s function,
Bouzerar et al [13] arrived at the conclusion that the local coupling between the carrier and
the impurity spins must be intermediate in order to acquire ferromagnetism. In this paper
we use the formalism of the CPA in [15] to study the ground-state properties of III–V DMS.
In contrast to [12], we keep S = 5/2 and treat the impurity spins fully quantum mechanically.
Though it is mostly accepted that the effective spin of valence holes is 3/2 [16–20], we describe
here the holes as spin-1/2 fermions. It is usually believed that such a description can still
catch the essential physics. Because of spin–orbit interaction, the p-orbitals are spilt (with
split-off �0.34 eV) into a spin-3/2 multiplet and a spin-1/2 multiplet [21]. Using a spherical
approximation, the kinetic energy of the Luttinger–Kohn Hamiltonian [21] for the spin-3/2
multiplet takes the form

∑
µ(h̄

2k2/2mµ)c
†
kµckµ near the valence top after diagonalization,

where mµ = mh � 0.5m for µ = ±3/2 and mµ = m� � 0.07m for µ = ±1/2 (m is the
effective mass of a free hole). The interaction between the spin of holes and local 5/2-spins now
takes a k-dependent form

∑
k,k′ S · c†

kJ(k,k′)ck′ exp[−i(k − k′) · R] [18]. Since the DOS for

parabolic band is g(ε) = (1/2π2h̄3)(2m)3/2
√
ε, we have the ratio of DOS gh(ε)/g�(ε) � 19

for heavy holes and light holes, i.e. about 95% of valence holes are heavy holes. Therefore, it
is a valid approximation to consider only heavy holes. What is more, since the hole density is
very small, the Fermi wavevector is supposed to be very small and the it is thus a reasonable
approximation to consider those k values in the interaction term. And this leads to the usual
assumption that the carriers are shallow holes and the coupling of the shallow holes to the Mn2+
can be described by local Kondo interaction between 5/2-spins and 1/2-spins.

We study here one of the most commonly studied DMS, Ga1−x Mnx As, where the doping
concentration x varies from 0.015 to 0.075 in the region of interest for ferromagnetism [1].
In Ga1−x Mnx As, ferromagnetism was first realized at a Curie temperature of 110 K [2].
The carriers are holes originating from randomly distributed Mn. The system is highly
compensated [22–24] with a hole density p only around 10% of the Mn density x . There are
different kinds of randomness, e.g. substitutional randomness, interstitial randomness, antisite
randomness and directional randomness of impurity spin. It is commonly agreed now that
interstitial Mn atoms and antisite As only reduce the hole densities and do not affect conduction
of holes significantly. Therefore we consider only two kinds of randomness, i.e. the random
substitution of the Mn atoms and the random direction of the impurity spins. The model
Hamiltonian in our description is

H =
∑

i,j,σ

tijc
†
iσ cjσ +

∑

i

ui (1)

where ui depends on whether i is a Ga or Mn site. For a Ga site ui = uG
i = EG

∑
σ c†

iσ ciσ ,

and for a Mn site ui = uM
i = EM

∑
σ c†

iσ ciσ + JKSi · si. Si is the local spin of Mn at site i,
s = (1/2)c†

σ τσσ ′cσ ′ is the spin of a hole where c†
σ (cσ ) is the creation(annihilation) operator

for holes, spin indices σ, σ ′ = ↑,↓ and τ = (τ1, τ2, τ3) are the three usual Pauli matrices. EM
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and EG are the on-site energies for Ga and Mn and are assumed constant. The hopping energy
tij = t if i, j are nearest neighbours and zero otherwise and JK > 0 is the local Kondo coupling.
The details of the lattice structure are not crucial in the following discussion. According to the
general scheme of CPA, the virtual unperturbed Hamiltonian is

H (ε) =
∑

σ,k

(tk +�σ (ε))c
†
kσ ckσ (2)

where ε is the Fourier frequency variable, �σ (ε) is the CPA self-energy to be determined self-
consistently and tk is the Fourier transformation of tij. Then the relative perturbation V is given
by

V = H − H (ε) =
∑

i

vi (3)

where vi = vG
i = ∑

σ (EG −�σ )c†
iσ ciσ for Ga and vi = vM

i = ∑
σ (EM −�σ )c†

iσ ciσ + JKSi ·si

for Mn. The reference Green’s function is 〈iσ |R(ε)|jσ ′〉 = 〈0|ciσ (ε − H )−1c†
jσ ′ |0〉 where

|0〉 is the vacuum state of the c operators, and the associated t matrices are tG
i = vG

i /(1 −
RvG

i ), tM
i = vM

i /(1 − RvM
i ). So the CPA equation and DOS are given by

(1 − x)tG
i + x〈t M

i 〉spin = 0 (4)

and

gσ (ε) = − 1

π
Im Fσ (ε) (5)

where 〈· · ·〉spin denotes the average over the configurations of impurity spins and Fσ (ε) =
〈σ i|R|iσ 〉 = (1/N)

∑
k[1/(ε − tk − �σ )], where N is the number of lattice sites. As usual,

the spin-resolved bare DOS (for undoped GaAs) can be approximated by the semicircle DOS

g0(ε) = 2

π�

√

1 −
( ε

�

)2
(6)

where � denotes the half-band width. At zero temperature, the carrier density for spin σ can
be expressed as nσ = ∫ εF

−∞ gσ (ε) dε, where εF is the Fermi energy, and the total carrier density
n = n↑+n↓. The total electronic ground-state energy per site is εg = ∫ εF

−∞ ε[g↑(ε)+g↓(ε)] dε.
Defining V↑ = EM −�↑ + (JK/2)Sz, V↓ = EM −�↓ − (JK/2)Sz,Uσ = Vσ − JK/2,W↑ =
(1/4)J 2

KS−S+,W↓ = (1/4)J 2
KS+S−, the CPA equations can be written as

(1 − x)
EG − �↑

1 − F↑(EG − �↑)
+ x

〈

[V↑(1 − F↓U↓)+ F↓W↑]

× 1

(1 − F↑V↑)(1 − F↓U↓)− F↑ F↓W↑

〉

spin
= 0 (7)

(1 − x)
EG − �↓

1 − F↓(EG − �↓)
+ x

〈

[V↓(1 − F↑U↑)+ F↑W↓]

× 1

(1 − F↓V↓)(1 − F↑U↑)− F↑ F↓W↓

〉

spin
= 0. (8)

These relations are given in [15] in another context. For any f (Sz), the spin average is
given by 〈 f (Sz)〉spin = ∑S

Sz=−S eλSz
f (Sz)/

∑S
Sz=−S eλSz

where λ is determined by the
condition 〈Sz〉spin = m, m being the given magnetization of the impurity spins. In our single-
particle CPA, the Callen–Shtrikman relation [25] that tells there is a one-to-one correspondence
between m and 〈(Sz)n〉spin for n > 1 applies. Corresponding to bare DOS, we have
F (0)(ε) = (2/�2)(ε − √

ε2 −�2) so Fσ (ε) = F (0)(ε − �σ ). Solving for �σ , we have



1444 S-S Feng and M Mochena

1.0

0.8

0.6

0.2

0.0

– 0.2

– 0.4

– 0.2

0.0

0.2

0.4

0.6

– 0.4

– 0.6

– 0.8

0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.0

– 0.2
– 0.1

–1 0 1
–1 0 1

–1.0 – 0.5 0.0 0.5 1.0

0.4

0.8

0.6

0.2

0.0

– 0.2

0.4

– 1.0 – 0.5 0.0 0.5 1.0

Figure 1. DOS and polarization for a number of model parameters.

�σ = ε − (�2/4)Fσ − 1/Fσ . Therefore CPA equations can be turned into equations for
functions Fσ for a given ε. Once Fσ (ε) are known, DOS gσ (ε) and quantities like Fermi
energy can be calculated.

To solve CPA equations (7) and (8), we choose x = 0.05, p = 0.1x and set EG = 0
since we can shift the chemical potential without loss of physics. Energies are normalized
so that � = 1. The solution of Fσ (ε) is generated by iteration starting from F (0). First,
we use the small value of x to generate �σ and then use the resulting �σ to generate Fσ .
We calculated the DOS and the spin polarization P(ε) [26] for model parameters JK =
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, EM = 0,−0.2,−0.4,−0.6 with m = 0.0.5, 1.0, 1.5, 2.0, 2.5. As a
check for our numerical results, the sum rule

∫ ∞
−∞ gσ (z) dz = 1 is preserved and the relation

n↑ + n↓ = p is also preserved where nσ is calculated from spin-resolved DOS respectively. In
figure 1 we show some of our results. The curves presented in the main panels of figure 1 are
from the bottom of the band to Fermi energies at zero temperature for clarity since this portion
is important for low-temperature physics. The insets outline the full behaviour. It is seen that
for very weak Kondo couplings such as JK = 0.2�, 0.3� there are no impurity bands and the
DOS is not substantially different from the bare DOS in shape. Only when Kondo coupling
becomes strong enough can there be impurity bands and corresponding peaks. In contrast to
the conclusion of classical spin approximation [12], the spin polarizations are not constant up to
Fermi energies. Figure 1 shows that for m > 0, there are always more spin-down carriers than
spin-up carriers, in compliance with the fact that the local p–d coupling is antiferromagnetic [4].
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Figure 2. Relation of εg versus m: B, JK = 0.1; C, JK = 0.2; D, JK = 0.3; E, JK = 0.4; F,
JK = 0.5; G, JK = 0.6.

Another substantial difference between our calculated DOS and that in [12] is that there is no
impurity peak above the top of the band in our calculation. So the ε ↔ −ε symmetry of the
bare DOS is broken by the impurities.

Figure 2 shows the relation between ground-state energy per site and the impurity
magnetization m. In the actual calculation of ground-state energy, an important issue is
the determination of the Fermi energy which is fixed by the integration of an interpolation
function of the DOS. If the interval δε is not small enough, the integral of the interpolated
DOS may vary significantly with the choice of δε. To make it stable enough, we choose
δε = 5 × 10−4 to interpolate the DOS linearly. Our results show that for all the chosen values
of model parameters, the ground-state energy per site always decreases, though very slowly,
with increase in impurity magnetization. Therefore CPA predicts that at very low temperatures
ferromagnetism is always energetically favourable for all the model parameters considered.

In figure 3, we show the dependence of Curie temperature on the model parameters and
the doping concentration. Weiss molecular field theory is employed as follows to calculate the
Curie temperature. Given m, one can calculate DOS and then 〈sz〉. So one can establish
the relation 〈sz〉 = 〈sz〉(m). On the other hand, given 〈sz〉, each impurity spin feels an
effective field JK〈sz〉 and thus we have m = SBS(βh) with h = −JK〈sz〉(m), β = 1/kBT
and BS(x) the conventional Brillouin function. For very small m, we have 〈sz〉 � −Am
with A > 0 and we have βh � β JK Am. So BS(βh) � (S + 1)βh/3 and thus the
Curie temperature can be estimated by kBTC � JKS(S + 1)A/3. For small m, letting
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Figure 3. Theoretical estimation of Curie temperature using Weiss molecular theory.

F↑(z) = F(z)+ψ(z)m, F↓(z) = F(z)−ψ(z)m where F(z) is the paramagnetic solution, we
have

A(JK, EM, x, β) � 1

π

∫ εF

−∞
dε Imψ(ε) (9)

where we have ignored the β dependence. As our numerical results (not shown here) indicate,
the chemical potential is very close to the zero-temperature Fermi energy in a wide range of
temperatures (β > 100), showing that the Fermi function can be approximated by the zero-
temperature step function. Since the width of the full valence band of GaAs is about 10–12 eV
(the width of �8 band ∼4 eV) [27], here we take� = 6 eV. The left panel in figure 3 shows the
relation of TC versus JK for different values of EM. The curves exhibit a linear relation. For
JK > 0.3, TC is almost independent of EM. The right panel shows the dependence of Curie
temperature on the doping concentration for EM = 0 and various values of JK. Here we still
assume that the hole density p = 0.1x . Again, the relation indicated is linear in the range
0.01 < x < 0.07. Figure 3 suggests that to reach the observed TC = 110 K, the value of JK

needs to be 0.3�−0.4�. For� = 6 eV, this value is much larger than the value 1 eV calculated
in [17]. But it is still within the possible range proposed in [28]. Like in the dynamical mean
field study [29] which also used a semicircle DOS and bandwidth ∼10 eV, the crucial issue in
our current CPA study is the behaviour of the Curie temperature versus the model parameters.
The resulting number of Curie temperatures can be scaled up or down depending on the choice
of the bandwidth.

To conclude, we summarize our results here. Using CPA and treating the impurity spins
fully quantum mechanically, we have calculated the ground-state energies of GaAs-based III–
V DMS for a wide range of model parameters. The results show that ferromagnetism is
always preferable at low temperatures. Unlike the classical treatment of the impurity spins,
our approach predicts that an impurity band can arise only at bottom of the band of the host
system, showing asymmetry caused by doping. With the help of the Weiss molecular theory
of ferromagnetism, we obtained a linear relation of Curie temperature with respect to Kondo
coupling and doping concentration. Our results agree with those in [30]. As is known from
experiments [1, 22], TC increases almost linearly with x for x < 0.053 and starts to drop
when x becomes larger. The contradiction might be reconciled by the dependence on x of the
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exchange integral (usually denoted as N0β). It is found in [28] that the absolute value N0β

decreases as x increases, a behaviour already well known to occur in Co1−x Mnx S. Therefore,
if there is a relation like JK = −ax + b with a and b > 0, as suggested by the data given
in [28], it can be expected that the resulting Curie temperature may start to decrease at a certain
level of doping concentration.
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